If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8.4^2+x^2=14^2
We move all terms to the left:
8.4^2+x^2-(14^2)=0
We add all the numbers together, and all the variables
x^2-125.44=0
a = 1; b = 0; c = -125.44;
Δ = b2-4ac
Δ = 02-4·1·(-125.44)
Δ = 501.76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{501.76}}{2*1}=\frac{0-\sqrt{501.76}}{2} =-\frac{\sqrt{}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{501.76}}{2*1}=\frac{0+\sqrt{501.76}}{2} =\frac{\sqrt{}}{2} $
| -5x+9=-32 | | -9.5f+0.98=-8.3f+2.14+3.04 | | A=5+0.5d. | | 2n÷3=8 | | x^2+13x+8x+50=180 | | 1.5x-4=4 | | 154=2x+12 | | -5+9y=-32 | | 16.50h+289=18.75h+274 | | -2(w-3)=-3w+3-5w | | -1+9p=-7+6p | | 5x+15-2x=46-4x-4 | | –5t=7−4t | | -7(1+5x)=7(-5-8x) | | 2x=12•12 | | 1/16r+6=7 | | 15t-20=50 | | -56=x-6x-1 | | 5-8.7t=-10t-6.05 | | 6r+5=20+7r | | −15+w=14 | | 6g-2=-2g-10 | | Y=56x-125 | | 12y-4=80 | | 11/2x+3=51/3 | | C(x)=6x+2 | | -216=8(5x-2) | | 8.8m+4.53+5.7m=7.5m-5.97 | | -1.5x5=-7.5+2.75= | | 28‐7x=40‐3x | | 62=2x+16 | | 8.8m+4.53+5.7m=7.5-5.97 |